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• The orthographic transcription of audio
recordings can provide important evidence in a
forensic case (Fraser, 2021), but producing
transcripts is an extremely time-consuming task
and is often a prerequisite to further analyses.

• Huge improvements in automatic speech
recognition (ASR) have been observed
throughout the past two decades, particularly
with the recent development of deep learning
(Xiong et al., 2016).

• The use of ASR could significantly decrease the
amount of time and effort taken to produce a
transcript and this could make such systems an
attractive prospect to those in law enforcement
(Loakes, 2022).

• The appropriacy of ASR for the transcription of
indistinct forensic-like audio is worthy of
investigation. This paper reports the design and
results of a controlled transcription experiment
in which twelve automated transcription tools
produced transcripts for the same audio
recording.

Introduction

Context

• A conversation between five adults in a busy
restaurant was recorded on a smart phone. It
shares many of the typical features of forensic
recordings, including the presence of multiple
speakers, background noise and use of non-
specialist recording equipment. It has been
found to pose a challenging transcription task for
human transcribers (Love & Wright, 2021).

Data and Method

• Initial analysis reveals a high level of variability across the twelve transcripts. Variation can be attributed to a
few causes, including phonetic similarity and the interference of inappropriate prediction from training
data (cf. Malik et al., 2021) (e.g. deep fried was transcribed by five systems, but two mistranscribed fried as
Throat. In both cases, Deep and Throat are capitalised and seem to be a reference to the US Watergate
scandal in the 1970s).

• Across a large sample of readily-available automated speech recognition (ASR) technologies, ASR does not
appear to be suitable for the transcription of indistinct recordings for forensic contexts.

• As a result, our view is that, at present, it is more effective for humans to transcribe indistinct audio ‘from
scratch’ as opposed attempting to manage and interpret the output of such systems.
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ASR tool % match ASR tool % match

Microsoft 
Transcribe

70.3 Temi 46.1

Konch 52.7 Transcribear 45.2

Descript 52.1
Transcribe by 
Wreally

26.4

Trint 51.2 HappyScribe 21.7

Nvivo 49.1 Google Cloud 14.9

Otter 48.2 Sonix 13.9

• Many factors negatively affect the accuracy of
automatic transcription systems, e.g.
spontaneous speech and increased speech rate
(Benzeghiba et al., 2007), overlapping speech
(Raj et al., 2021), and background noise
(Littlefield & Hashemi-Sakhtsari, 2002).

• These factors can be applied to forensic
recordings which often involve multiple speakers
and are of bad quality (Loakes & Fraser, 2021).

• Loakes (2022) tested two automatic transcription
systems on a forensic-like poor-quality recording,
and they found that performance was far worse
than for a good quality recording, including
issues such as consistently identifying non-
speech sounds (e.g. drums, laughter) as speech
and not transcribing large sections of the
recording at all.

• In our study, we compare a longer indistinct
recording across a larger set of automatic
transcription systems.

Examples of 
mistranscription:
• ignore > nor, you know
• decipher > to say
• drunk > dropped
• see > say
• eyes > item
• chicken tikka masala > 

she can take

• calories > because we, 
characters

• samosa > small, similar
• worrying > varying
• supper > super
• deep fried > Deep 

Throat

Results
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• The recording was processed by 12 free or
commercially available ASR systems.

• 18 utterances were identified which are clear
enough in their content to be confident of
ground truth. We compared the output across
the systems, identifying widespread gaps and
common mistranscriptions (e.g. Figure 1).

5 speakers (3F, 2M)

4 minutes

12 ASR systems

Figure 1. An example of an aligned comparison of the transcripts produced by all twelve automated systems for the utterance “I can’t see in 
this light or maybe my eyes just don’t see”.
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Table 1. Average proportion of matched words in each transcript 
compared to ground truth transcript across the 18 utterances.


